

SY22306-S1 5 Range Ambient Light Sensor with Side View Package

General Description

The SY22306-S1 is an ambient light sensor (ALS) with SMBus-compatible I²C interface. Communication to the device is accomplished through the fast I²C interface (up to 750 kHz) for easy connection to a microcontroller or embedded controller.

The ambient light sensor (ALS) has five operating ranges for adapting to different applications and various optical arrangements. The ALS reading (output data) is proportional to the ambient light; no additional data manipulation is required. It also has a built-in circuit to reject the flicker noise caused by indoor light sources. The most important feature of the ALS is that the spectral response is almost the same as the human eye's photopic vision due to a well-engineered optical coating on the top of the photodiode; thus, a light source correction coefficient is unnecessary.

Features

- Wide Operating Voltage Range:
 - 1.7V to 3.6V Supply for I²C Interface
 - 2.3V to 3.6V Sensor Power Supply
- Works Under All Light Sources, Including Sunlight
- Green Power:
 - Less than 130µA Supply Current
 - Less than 1µA Supply Current When Powered Down
- I²C (SMBus Compatible) Interface
- Temperature Compensation
- Ambient Light Sensing:
 - Output Digital Counts Proportional to Lux
 - Indoor Light Source Flicker Noise Rejection and IR Rejection
 - Spectral Response Matching the Human Eye's Photopic Vision
 - Selectable 120/240/481/963/1927 Lux Range
- Side View Package:
 - Package Size: 2.95mm x 1.25mm x 1.5mm
 - Soldered on Both Top View and Side View

Applications

- TV Panel Control
- Accessories
- Industrial Control
- Lighting Control

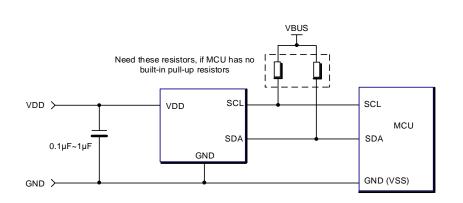


Figure 1. Typical Application Schematic Diagram

Note: Bypass capacitors should be placed as close as possible to the device to reduce noise.

Functional Block Diagram

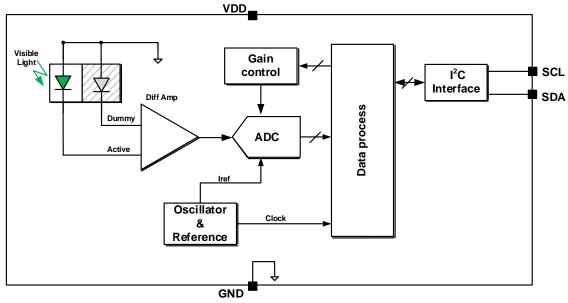
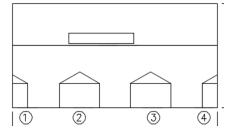



Figure 2. Block Diagram

Pin No	Pin Name	Pin Description
1	VDD	Positive supply: 2.3V to 3.6V.
2	GND	Ground pin.
3	SDA	I ² C data line. The I ² C bus lines can be pulled from 1.7V to above VDD, 3.6V max.
4	SCL	I ² C clock line. The I ² C bus lines can be pulled from 1.7V to above VDD, 3.6V max.

Absolute Maximum Ratings [1] T _A = +25°C	Min	Max	Unit	
VDD Supply Voltage	-0.3	4.0	V	
I ² C Bus Voltage (SCL, SDA)	-0.3	4.0	V	
I ² C Bus Current (SCL, SDA)		10	mA	
ESD Human Body Model	±20	V		
ESD Charged Device Model	±500			

Recommended Operation Conditions	Min	Max	Unit
Supply Voltage	2.3	3.6	V
Operating Temperature	-40	85	°C

SY22306-S1

Electrical Characteristics The general test conditions are $V_{DD} = 3.0V$, $T_A = +25^{\circ}C$, unless otherwise specified							
Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Power Supply Range	V _{DD}		2.3	3.0	3.6	V	
Supply Current when ALS disabled	IDD_OFF	ALS_EN = 0			1	μA	
Supply Current when ALS enabled	IDD_ALS	ALS_EN = 1	90	110	130	μA	
Full-Scale ADC Output	DATA _{ADC_FS}				4095	counts	
12-bit ALS Measurement Time	t _{ADC_ALS}			100		ms	
Finest Resolution for ALS Channel	RESFINE	White LED,Ev=100 Lux, ALS_RANGE=100	2550	3400	4080	counts	
ALS Measurement when there is no Light	DATA _{DARK}	Ev = 0 Lux, Range 4			5	counts	

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage Range for I ² C Interface	VI ² C		1.7		V _{DD} +0.3	V
SCL Clock Frequency	fscl				750	kHz
Low-Level Input Voltage of SCL and SDA	VIL				0.55	V
High-Level Input Voltage of SCL and SDA	VIH		1.25			V
Hysteresis of Schmitt Trigger Input	V _{hys}		0.05V _{DD}			V
Low-level Output Voltage (open-drain) at 4mA Sink Current	Vol				0.4	V
Input Leakage for Each SDA, SCL	li		-10		10	μA
Pulse Width of Spikes Suppressed by the Input Filter	tsp				50	ns
SCL Falling Edge to SDA Output Data Valid	taa				0.9	μs
Capacitance for Each SDA and SCL Pin	Ci				10	pF
Hold Time (repeated) START Condition	t _{HD:STA}		0.6			μs
Low Period of the SCL Clock	tLOW		1.3			μs
High Period of the SCL Clock	tніgн		0.6			μs
Set-up Time for a Repeated START Condition	t _{SU:STA}		0.6			μs
Data Hold Time	thd:dat		30			ns
Data Set-up Time	tsu:dat		100			ns
Rise Time of Both SDA and SCL	t _R	$R_{pull-up} = 10k\Omega, C_b = 10pF$		95		ns
Fall Time of SDA and SCL	t⊧	$R_{pull-up} = 10k\Omega, C_b = 10pF$		25		ns
Set-up Time for STOP Condition	tsu:sto		0.6			μs
Bus Free Time between a STOP and START Condition	t BUF		1.3			μs
Capacitive Load for Each Bus Line	Cb				0.4	nF
SDA and SCL System Bus Pull-up Resistor	R _{pull-up}	Maximum is determined by t_{R} and t_{F}		10		kΩ
Data Valid Time	tvd:dat				0.9	μs
Data Valid to Acknowledge Time	tvd:ack				0.9	μs
Noise Margin at the LOW Level	VnL		0.1VDD			V
Noise Margin at the HIGH Level	VnH		0.2VDD			V

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: The I²C bus protocol was developed by Philips (now NXP). For a complete description of the I²C protocol, please review the NXP I²C design specification at http://www.I²C-bus.org/references/.

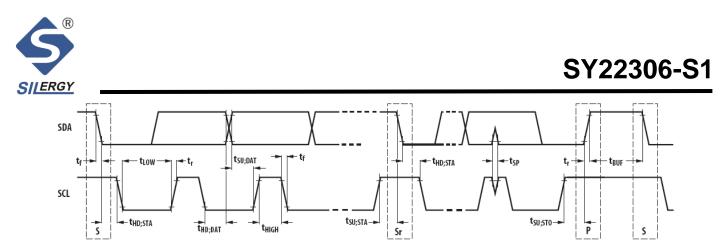
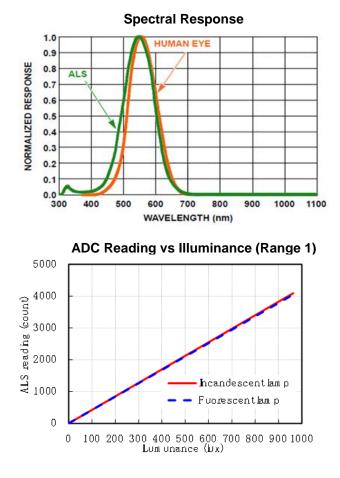
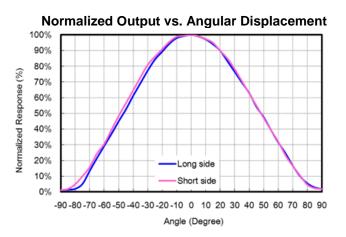
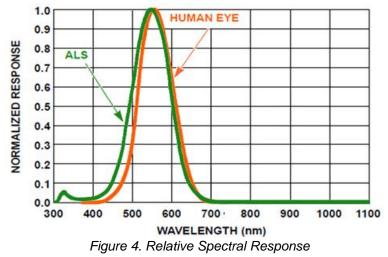




Figure 3. I²C Timing Diagram

Typical Performance Curves



Detailed Description

Ambient Light Sensing

Figure 4 shows the spectral response of SY22306-S1, which is very similar to the human eye's photopic vision curve. Under the same luminance (lux), the ratio of the ALS reading of an incandescent light source (rich in IR radiation) to that of a fluorescent light source (no IR radiation) is around 1.0.

The power grids are using either 50Hz or 60Hz AC. The artificial light sources powered by the grid vary in intensity at the power grid frequencies. The varying light intensity is one of the noise sources for light sensors. To eliminate the noise caused by the power grid, set the integration time of the internal ADC as an integer multiple of the noise signal period. For example, for a 50Hz grid, light flicker noise can be eliminated by setting up the ADC integration time to n*20ms (n=1,2...ni).

The integration time for SY22306-J01 is 100ms, which will eliminate the power grid noise or indoor light source flicker noise.

Calculating ALS Lux

Table 1 lists the resolution of each ALS range. The luminance (lux) can be obtained simply by multiplying ALS data (ALS DATA) by its corresponding resolution.

Table 1. ALS Resolution at Different Ranges								
ALS_RANGE	Resolution (lux/count)	Luminance (lux)						
0	0.471	ALS_ DATA x 0.471						
1	0.235	ALS_ DATA x 0.235						
2	0.118	ALS_ DATA x 0.118						
3	0.059	ALS_ DATA x 0.059						
4~7	0.029	ALS_ DATA x 0.029						

Table	1: ALS Resolution at Different Range	S

In a typical application, the ambient light sensor is packaged or placed behind a window, as shown in Figure 6. The transmittance of the sensor window ranges from 80% to 5% or less. To obtain the actual illuminance, the window transmittance must be considered for accurate estimation:

ALS_DATA = (Ambient Light in lux) * (Transmittance of Window)/Resolution

Example 1

The illuminance where the ambient light sensor is placed is 100 lux, the transmittance of the sensor window is 50%, and the resolution of the ambient light sensor is set at 0.059 lux/counts. The output count of the ambient light sensor is calculated as:

ALS_DATA = Illuminance * Transmittance/Resolution = 100 lux * 50 %/(0.059lux/counts) ≈ 847 counts This translates to an overall device sensitivity of 8.47 counts/lux.

Example 2

The illuminance where the ambient light sensor is placed is 100 lux, the transmittance of sensor window is 20%, and the resolution of the ambient light sensor is set at 0.059lux/counts. Under these conditions, the output count of the ambient light sensor is:

ALS_DATA = Illuminance * Transmittance/Resolution = 100 lux * 20 %/(0.059lux/counts) ≈ 339 counts.

This translates to an overall device sensitivity of 3.39 counts/lux.

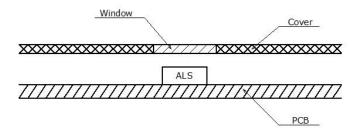


Figure 5. Ambient Light Sensor Mounted Inside an Apparatus

The light attenuation due to the air gap between the window's bottom surface and the top surface of the sensor was omitted for the above calculations. In actual applications, light attenuation can be induced by window transmittance, air gap, device placement tolerances, and more. A thorough validation using actual use case parameters is recommended to confirm the operation and evaluate the device performance and accuracy across all operating conditions.

VDD Power-Up and Power Supply Considerations

Upon power-up, ensure that the slew rate of VDD is greater than 0.5V/ms. After power-up, the supply voltage must not drop below 2.0V. If this happens, switch off the power, wait at least one second to discharge the power supply rail, and then power on the device again.

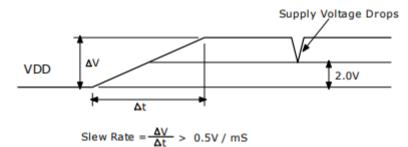


Figure 6. Waveform of Supply Voltage VDD

Layout Considerations

The SY22306-S1 is designed to reduce the influences of the PCB layout. To ensure optimal performance, route the supply and I²C traces as far as possible from all noise sources. Place a 0.1μ F to 1μ F decoupling capacitor close to the device.

I²C Read / Write Register Data

The SY22306-S1's I²C slave address is 0x45(0b'1000101). Figures 7 and 8 detail the protocol of writing or reading the sensor register data.

A : Acknowledge (0)

SY22306-S1 Rev.1.0 © 2023 Silergy Corp

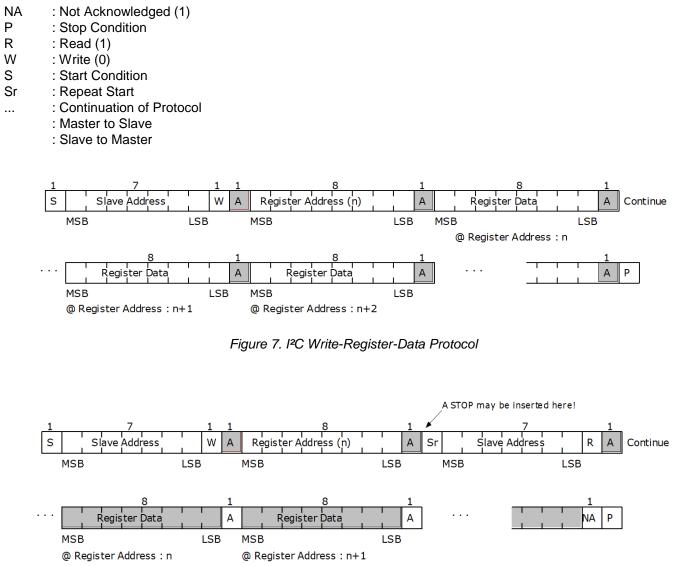


Figure 8. I²C Read-Register-Data Procotol

Register Map

There are eight 8-bit registers accessible via the I²C. Register 0x00 has a fixed value of 0x21 for communication test. Register 0x01 defines the operation mode of the device. Registers 0x02 through 0x05 are reserved for internal use. Registers 0x06 and 0x07 store the results of ALS ADC conversions.

Registers and Register Bits

REG	REG		BIT							
Address	Name	7	6	5	4	3	2	1	0	Default
0x00	COM_TEST		Chip ID				0x21			
0x01	CONFIGURE	Write 0	ALS_RANGE[20]			Wri	te 0	ALS_EN	Write 0	0x00
0x06	ALS_DATAL		ALS_DATA[7:0]					0x00		
0x07	ALS_DATAH	Unused ALS_DATA[ATA[11:8]		0x00		

Register 0x00 (COM_TEST) –Communication Test Register							
Bit	Access	Default	Name	Description			
7:0	RO	0x21	Chip_ID	Read this register through the I ² C interface to identify the device with chip ID 0x21. It can also help to test whether the communication link is established or not.			

Register 0x	01 (CONFI	GURE) - A	LS Configuration	on
Bit	Access	Default	Name	Description
7	RW	0x00	Reserved	Unused register bit- write 0
				For bits 6:4 = (see the following)
				000: ALS is in the 1927 lux range
6:4	RW	0x00	ALS_RANGE	001: ALS is in the 963 lux range
0.4	17.00	0,000		010: ALS is in the 481 lux range
				011: ALS is in the 240 lux range
				100~ 111: ALS is in the 120 lux range
3:2	RW	0x00	Reserved	Unused register bit- write 0
				When = 0, ALS sensing is disabled
1	RW	0x00	ALS_EN	When = 1, continuous ALS sensing is enabled with new data
				ready every integration cycle.
0	RW	0x00	Reserved	Unused register bit- write 0

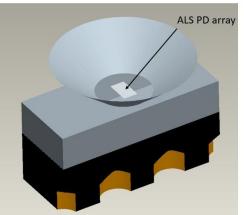
Register 0x06 (ALS_DATAL) – ALS Reading (Lower 8 bits)							
Bit	Access	Default	Name	Description			
7:0	RO	0x00	ALS_DATA	Lower 8 bits (of 12 bits) of ALS reading			

Register 0x07 (ALS_DATAH) - ALS Reading (Upper 4 bits)							
Bit	Access	Default	Name	Description			
7:4	RO	0x00	Unused	Unused bits			
3:0	RO	0x00	ALS_DATA	Upper 4 bits (of 12 bits) of ALS reading			

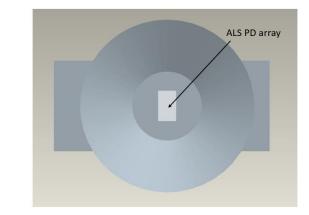
Package Outline Dimensions

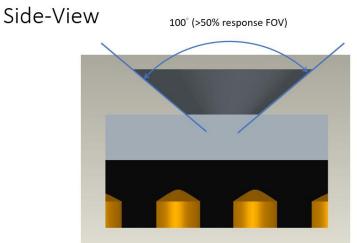
Recommended Land Pattern

Pin Number	Pin Name	
1	VDD	
2	GND	
3	SDA	
4	SCL	

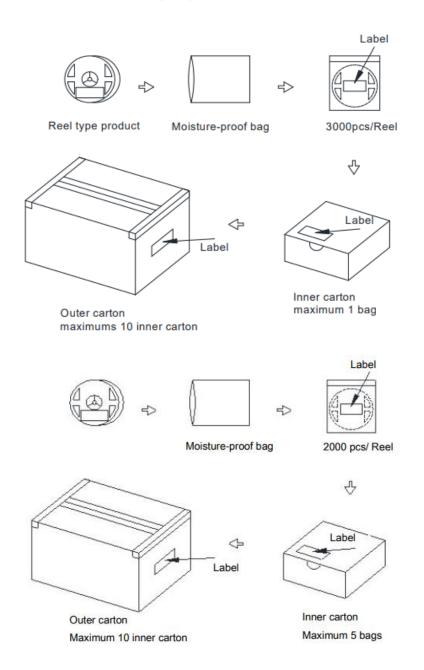

Note 1: All tolerances are ±0.1mm unless otherwise specified.

- Note 2: Sensing center coordinates at point A (x,y) = (1.55, 0.62).
- Note 3: Sensitive area: 0.42mm x 0.25mm.
- Note 4: Units are in mm.



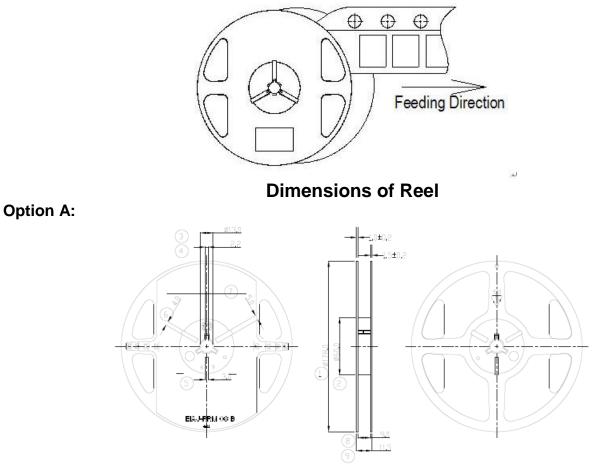

3D Product Drawing Refer to the 3D drawing of SY22306-S1 ALS PD (photodiode) and FOV (field of view) below:

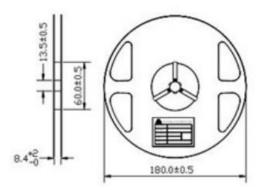
3D Drawing



Packaging Specifications

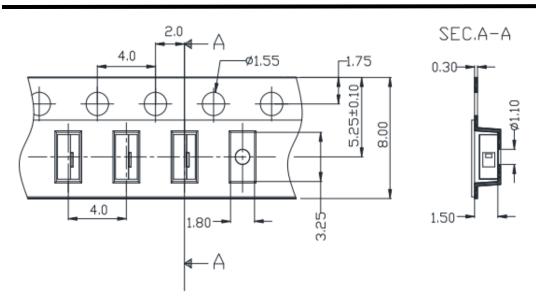
Option A:


Option B:



Feeding Direction:

(Applicable for both Option A and Option B)



Option B:

Dimensions of Tape (Applicable for both Option A and Option B.)

Note: All dimensions are in millimeters and exclude mold flash and metal burr. **Recommended Storage Method**

Proper storage measures are recommended as soon as the bag is opened to prevent moisture absorption. The following conditions should be observed if bags are not available:

- Storage temperature: 10°C to 30°C
- Storage humidity: ≦60%RH max
- Storage Time: ≦168hr max

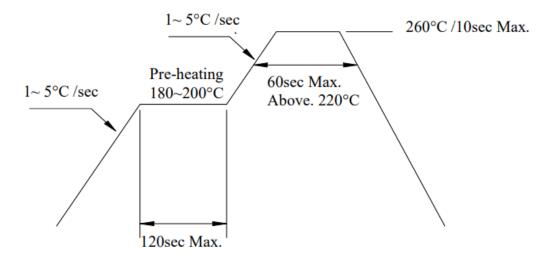
Moisture-Proof Package

To avoid moisture absorption by the resin, the product should be stored under the following conditions:

- Temperature: 23 ± 5°C
- Relative humidity: 60% (max)
- Baking is required if the devices have been stored unopened for more than 24 months and the HIC card is not discolored.

ESD Precaution

Proper storage and handling procedures should be followed to prevent ESD damage to the devices, especially when removed from the anti-static bag. Warning labels for electro-static sensitive devices are on the packaging.


Manual Soldering Corrections

Make any necessary soldering corrections manually.

Temperature shall be no more than 350°C (25W for soldering iron) within 3 seconds. Do not do this more than once for any given pin.

Recommended Solder Profile:

Note 1: Reflow soldering should not be done more than twice.

Note 2: Do not put stress on the ALS devices during the heating stage while soldering.

Note 3: Do not wrap the circuit board after soldering.

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warrantied. Please make sure that you have the latest revision.

Revision Number	Revision Date	Description	Pages changed
0.9	Mar 6, 2018	Initial Release	
0.9A	Oct 8, 2018	 Change COUNT_ALS_4 condition from "Fluorescent Lamp" to "White LED" Delete COUNT_ALS_0, COUNT_ALS_1, COUNT_ALS_2 and COUNT_ALS_3 Delete Figs"Stability of ALS output over Temperature" Update "Recommended Land pattern 	
0.9B	Sept 1, 2021	Update Package and taping information	
0.9C	May 5, 2023	Update Package Outline Drawings	
1.0	Jun 27,2023	Production Release	

IMPORTANT NOTICE

1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.

2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.

3. Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.

4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.

6. No offer to sell or license. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2023 Silergy Corp.

All Rights Reserved.